DIN Control and Indication

This section provides a selection of Isolating, Changeover and Selector Switches, Push Buttons, Indicator Lights, Delay Timers, Emergency Lighting Test Packages, DIN Socket Outlets and Contactors that are used for isolation, installation monitoring and circuit control.

06 Page
Isolating Switches 118
Manual Changeover Switches 119
Selector Switches 120
Contactors 121
Hum-free Contactors 122
Latching and Interface Relays 123
Push Buttons 124
Indicator Lights and DIN Socket Outlets 125
Transformers, Bells and Buzzers 126
Emergency Lighting Discharge Test Packages 127
Technical Information 128

Description

For use as a switch isolator in all types of circuits. As defined in AS/NZS3000-2018, clause 2.3.3.2:
"The supply to every installation shall be controlled by a main switch or switches that control the whole installation". Positive contact indication, with ON position ' l ' in red and OFF position ' O ' in green

Technical data

AC 22B duty specification
(mixed resistive and inductive
loads. Not motors)
PZ2 terminal screw for all ratings
Bi-connect terminals

Connection capacity

- In: 40A
- $25 \mathrm{~mm}^{2}$ rigid cables
- $16 \mathrm{~mm}^{2}$ flexible cables
- In: 63A and higher
- $50 \mathrm{~mm}^{2}$ rigid cables
- $35 \mathrm{~mm}^{2}$ flexible cables

Standards

Compliant with
AS/NZS IEC 60947-3 and
IEC60669-2-4 for ratings up to 63A
Technical information: Page 128

SBR164

Single pole

$\left.\right|^{\frac{1}{2}}$

Characteristics	Width	Cat ref.
$1 \times 40 \mathrm{~A} \mathrm{230V} \sim$	1 mod	SBR140
$1 \times 63 \mathrm{~A} \mathrm{230V} \sim$	1 mod	SBR164
$1 \times 80 \mathrm{~A} \mathrm{230V} \mathrm{\sim}$	1 mod	SBR180
$1 \times 100 \mathrm{~A} 230 \mathrm{~V} \sim$	1 mod	SBR190

Double pole

Characteristics	Width	Cat ref.
$2 \times 40 \mathrm{~A} 230$ to $400 \mathrm{~V} \sim$	2 mod	SBR240
$2 \times 63 \mathrm{~A} 230$ to $400 \mathrm{~V} \sim$	2 mod	SBR264
$2 \times 80 \mathrm{~A} 230$ to $400 \mathrm{~V} \sim$	2 mod	SBR280
$2 \times 100 \mathrm{~A} 230$ to $400 \mathrm{~V} \sim$	2 mod	SBR290

SBR264

Triple pole

Characteristics	Width	Cat ref.
$3 \times 40 \mathrm{~A} 400 \mathrm{~V} \sim$	3 mod	SBR340
$3 \times 63 \mathrm{~A} \mathrm{400V} \sim$	3 mod	SBR364
$3 \times 80 \mathrm{~A} 400 \mathrm{~V} \sim$	3 mod	SBR380
$3 \times 100 \mathrm{~A} 400 \mathrm{~V} \sim$	3 mod	SBR390
$3 \times 125 \mathrm{~A} 400 \mathrm{~V} \sim$	3 mod	SBR399

SBR399

Four pole

Characteristics	Width	Cat ref.
4×63 A 400V \sim neutral right	4 mod	SBR464
$4 \times 100 \mathrm{~A} 400 \mathrm{~V} \sim$ neutral right	4 mod	SBR490

SBR490

Auxiliary contacts

Characteristics	Width	Cat ref.
1NO +1NC 6A AC1	0.5 mod	ESC080
For remote indication, mechanical		
indicator to show the position of the		
contact. Maximum one auxiliary		
module per isolator device (left fitting)		

ESC080

Description

Manual Changeover Switches or DIN Rail Mounted Manual Transfer Switches (MTS) are for the manual switching between two or more electrical circuits.

Technical data

Utilization category: AC22B
(mixed resistive and inductive)
Connection capacity

- $16 \mathrm{~mm}^{2}$ rigid
- $10 \mathrm{~mm}^{2}$ flexible

Standards

Compliant to IEC 60947-3.
SFx63 comply to IEC 60669-2-4.
Technical information: Page 129

Manual Changeover Switches

Description	Characteristics	Width	Cat ref.
I-II Single pole, 2 ways with bottom common point	$1 \times 25 \mathrm{~A} 230 \mathrm{~V}$ ~	1 mod	SFL125
I-II Single pole, 2 ways, $1 \mathrm{NO} / 1 \mathrm{NC}$ w/out common point	$2 \times 25 \mathrm{~A}$ 230V~	1 mod	SFM125
I-II Double pole with bottom common point	$2 \times 25 A 230 \mathrm{~V}$	2 mod	SFL225
I-O-II Single pole Switches centre - off changeover with top common point	$\begin{aligned} & 1 \times 25 \mathrm{~A} 230 \mathrm{~V} \sim \\ & \hline 1 \times 40 \mathrm{~A} 230 \mathrm{~V} \sim \end{aligned}$	1 mod	SFT125
I-O-II Double pole Switches centre - off changeover with top common point	$\begin{aligned} & 2 \times 25 \mathrm{~A} 230 \mathrm{~V} \sim \\ & \hline 2 \times 40 \mathrm{~A} 230 \mathrm{~V} \sim \end{aligned}$	2 mod	SFT225 SFT240
I-O-II Four pole Switches centre - off changeover with top common point	$4 \times 40 \mathrm{~A} 230 \mathrm{~V}$ ~	4 mod	SFT440
I-O-II Double pole Switches centre - off changeover with bottom common point	$2 \times 63 \mathrm{~A} 230 \mathrm{~V}$ ~	4 mod	SF263
I-O-II Four pole Switches centre - off changeover with bottom common point	$4 \times 63 \mathrm{~A} 400 \mathrm{~V}$ ~	8 mod	SF463

SFT440

Description

Provides command signals or program selection in electrical control schemes.

Connection capacity

- Rigid conductor: 1.5 to $10 \mathrm{~mm}^{2}$
- Flexible conductor: 1 to $6 \mathrm{~mm}^{2}$

Standards

Conform to IEC947-3
BS EN 60947-3
Isolating voltage: 500 V ~
Nominal current: 10-20A

Selector Switches

| Step selector switch 20A 400V~ | 3 mod | SK604 |
| :--- | :--- | :--- | :--- |

Key selector switch
10A 400V~
3 mod
SK606

Spare key
SK001
For SK606

Description

For remote switching and control of power circuits. Suitable for lighting, heating, ventilation, pumps and home automation.

Manual override
To set output contacts permanently On or Off - Great for fault finding

Night \& Day override
Allows the End User to set output contact permanently Off or temporarily On until next switching cycle.

Specifications:

Coil Voltage:
230 V AC (50 Hz)
24 V AC $(50 \mathrm{~Hz})$

Output contacts

$1 \mathrm{NO}, 1 \mathrm{NO}+1 \mathrm{NC}, 2 \mathrm{NO}, 2 \mathrm{NC}$ $2 \mathrm{NO}+2 \mathrm{NC}, 3 \mathrm{NO}, 4 \mathrm{NO}, 4 \mathrm{NC}$

Output (Heating) AC1/AC7a (50Hz)
25A, 40A, 63A
at 230 V AC
$4.6 \mathrm{~kW}, 7.3 \mathrm{~kW}, 11.6 \mathrm{~kW}$
at 400 V AC
$13.8 \mathrm{~kW}, 22 \mathrm{~kW}, 35 \mathrm{~kW}$

Output (Motor) AC3/AC7b (50Hz)

8.5A, 25A, 32A
at 230 V AC
880W, $2.6 \mathrm{~kW}, 3.3 \mathrm{~kW}$
at 400 V AC
$2.6 \mathrm{~kW}, 7.8 \mathrm{~kW}, 10 \mathrm{~kW}$
Technical information: Page 131

Contactors							
Type		Rated output current					
		Coil AC (50Hz)	Override	AC1/AC7a	AC3/AC7b	Width	Cat ref.
1NO	A1 1	230 V AC	Manual	25A	8.5A	1 mod	ERC125
	${\underset{A}{1}}_{1}^{1}$	230 V AC	No	25A	8.5A	1 mod	ESC125
1NO+1NC	A1 13	230 V AC	No	25A	8.5A	1 mod	ESC227
	$\begin{aligned} & 1 \\ & 1 \\ & \text { A2 } \\ & 2 \end{aligned}$	24 V AC	No	25A	8.5A	1 mod	ESD227
2NC	$\begin{aligned} & \text { A1 } 13 \\ & 14 \\ & 17-7 \\ & \text { A2 } 24 \end{aligned}$	230 V AC	No	25A	8.5A	1 mod	ESC226
2 NO		230 V AC	Manual	25A	8.5A	1 mod	ERC225
		24 V AC	Manual	25A	8.5A	1 mod	ERD225
		230 V AC	Night \& Day	25A	8.5A	1 mod	ETC225
		230 V AC	No	25A	8.5A	1 mod	ESC225
		24 V AC	No	25A	8.5A	1 mod	ESD225
	A1 17	230 V AC	No	40A	25A	3 mod	ESC240
	$\begin{gathered} 1 \\ 1 \\ A 2 \\ 2 \end{gathered}$	230 V AC	No	63A	32A	3 mod	ESC263
3 NO	A1 135	230 V AC	No	25A	8.5A	2 mod	ESC325
	$\frac{1}{1}+b^{d}-d^{d}$	230 V AC	No	40A	25A	3 mod	ESC340
	A2 246	230 V AC	Night \& Day	40A	25A	3 mod	ETC340
2NO+2NC	A1 1357	230 V AC	No	25A	8.5A	2 mod	ESC427
	$\begin{gathered} 1 \\ 1 \end{gathered}$	230 V AC	No	63A	32A	3 mod	ESC465
4NC	A1 1357	230 V AC	No	40A	25A	3 mod	ESC441
	14-44	230 V AC	No	63A	32A	3 mod	ESC464
4NO	A1 1357	230 V AC	Manual	25A	8.5A	2 mod	ERC425
	Tos	230 V AC	No	25A	8.5A	2 mod	ESC425
	A2 2468	230 V AC	No	40A	25A	3 mod	ESC440
		230 V AC	No	63A	32A	3 mod	ESC463

ERC225

ESC425

ESC463

Accessories

LZ060

Description

Designed to provide customers with a good nights sleep. Remote switching and control of power circuits that are suitable for lighting, heating, ventilation, pumps and home automation

Manual override
To set output to contacts permanently On or Off - Great for fault finding.

Night \& Day override
Allows the End User to set output contact permanently Off or temporarily On until next switching cycle

Specifications:

Coil Voltage:
230 V AC (50Hz)

Output contacts

$1 \mathrm{NO}+1 \mathrm{NC}, 2 \mathrm{NO}, 2 \mathrm{NC}, 2 \mathrm{NO}+2 \mathrm{NC}$, $3 \mathrm{NO}, 3 \mathrm{NO}+1 \mathrm{NC}, 4 \mathrm{NO}, 4 \mathrm{NC}$

Output AC1/AC7a (50 Hz)

25A, 40A, 63A
at 230 V AC
$4.6 \mathrm{~kW}, 7.3 \mathrm{~kW}, 11.6 \mathrm{~kW}$
at 400 V AC
$13.8 \mathrm{~kW}, 22 \mathrm{~kW}, 35 \mathrm{~kW}$

Output AC3/AC7b (50Hz)

8.5A, 25A, 32A
at 230 V AC
880W, $2.6 \mathrm{~kW}, 3.3 \mathrm{~kW}$
at 400 V AC
$2.6 \mathrm{~kW}, 7.8 \mathrm{~kW}, 10 \mathrm{~kW}$
Technical information: Page 131

ESC425S

ESC463S

Hum-free Contactors

Type		Coil AC (50Hz) or DC	Rated output current				
			Override	AC1/AC7a	AC3/AC7b	Width	Cat ref.
2 NO	A1 13	230 V AC	No	25A	8.5A	1 mod	ESC225S
	T--1	230 V AC	No	40A	25A	3 mod	ESC240S
	A2 24	230 V AC	No	63A	32A	3 mod	ESC263S
3 NO	A1 135	230 V AC	Manual	25A	8.5A	2 mod	ESC325S
	$\begin{array}{cc} 1 & 1 \\ \text { A2 } & 24 \\ \hline \end{array}$	230 V AC	No	40A	25A	3 mod	ESC340S
$3 \mathrm{NO}+1 \mathrm{NC}$	$\begin{array}{lllll} \text { A1 } & 1 & 3 & 5 & 7 \\ -1 & d & d \end{array}$	230 V AC	No	25A	8.5A	2 mod	ESC428S
4NC	$\begin{array}{llll} \text { A1 } 13 & 5 & 7 \\ 1 & 4 & 4 & 4 \\ -1424 \\ \text { A2 } 246 \end{array}$	230 V AC	No	25A	8.5A	2 mod	ESC426S
4NO	A1 1357	230 V AC	No	25A	8.5A	2 mod	ESC425S
	$\frac{1}{1}-y^{d}-d^{d}$	230 V AC	No	40A	25A	3 mod	ESC440S
	A2 2468	230 V AC	No	63A	32A	3 mod	ESC463S

Accessories

Description	Characteristics		Cat ref.
Auxiliary contact	1113	(Leftside fitting - maximum one AUX per contactor device)	ESC080
(1NO+1NC)	$-f^{d}-$		
	1214		LZ060

Latching Relays Description For the control of lighting circuits in private buildings, small industrial buildings and administration buildings. Latching Relays operate when pulsed by a signal voltage. The pulse can be provided via a push button or switch. The first impulse sets the relay into its set (opposite) state, the next impulse returns it to its reset (original) state.

Connection capacity:

- Rigid capacity: 1.5 to $10 \mathrm{~mm}^{2}$ - Flexible capacity: 1 to $6 \mathrm{~mm}^{2}$

Interface Relay description

 To interface between low voltage and extra low voltage circuits to ensure galvanic insulation between LV and ELV to 4 kV .Ideal as an Interface between fire alarm, burglar alarm and other ELV systems and main distribution circuits.

Connection capacity

- $6 \mathrm{~mm}^{2}$ rigid cables
- $4 \mathrm{~mm}^{2}$ flexible cables

Technical information: Page 135

Latching Relays

Description	Coil $50 / 60 \mathrm{~Hz}$ V ac	Coil V dc	Power circuit AC1	Width	Cat ref.
1 NO	230 V ac	110 V dc	$16 \mathrm{~A}-250 \mathrm{~V}$	1 mod	EPE510
$1 \mathrm{NO}+1 \mathrm{NC}$	230 V ac	110 V dc	$16 \mathrm{~A}-250 \mathrm{~V}$	1 mod	EPE515
2 NO	230 V ac	110 V dc	$16 \mathrm{~A}-250 \mathrm{~V}$	1 mod	EPE520
2 NO	24 V ac	12 V dc	$16 \mathrm{~A}-250 \mathrm{~V}$	1 mod	EPE524

Interface Relay ELV/LV 1 way

Description	Characteristics	Width	Cat ref.
Output: 1 changeover	Coil voltage: 10 to 26V AC/DC	1 mod	EN145
	Contact max. 5A 230V~ min. 10mA-12V DC		

EN145

Description

2 versions:

- Impulse push buttons
- Latching push buttons

The versions with indicator lights
are equipped with green or red
diffuser (LED technology).

Connection capacity

- $10 \mathrm{~mm}^{2}$ rigid cables
- $6 \mathrm{~mm}^{2}$ flexible cables

Standards

- IEC60947-5-1 for push buttons
- IEC62094-1 for indicator lights

Push Buttons impulse without indicator light 16A - 250V~

Push Buttons impulse with indicator light

Description	Characteristics	Width	Cat ref.
$E-\}_{1}^{1} \otimes$	Contacts: 1NO green	1 mod	SVN411M
	Contacts: 1NC red	1 mod	SVN422M

Push Buttons latching without indicator light 16A - 250V~

Description	Characteristics	Width	Cat ref.
	Contacts: 1NO	1 mod	SVN312M
	Contacts: $1 \mathrm{NO}+1 \mathrm{NC}$	1 mod	SVN352M

Push Buttons latching with indicator light

Description

Used for remote controlling signalisation of any event in any electric installation (residential, tertiary \& industrial).

Features

LED technology providing longer life

- new design and integrated label holder.

Connection capacity

- $10 \mathrm{~mm}^{2}$ rigid cable
- $6 \mathrm{~mm}^{2}$ flexible cable

Standards

IEC62094-1 for indicator lights

Indicator Lights

Description	Characteristics	Width	Cat ref.
With light 230V~	$1 \times$ green	1 mod	SVN121M
	$1 \times \mathrm{red}$	1 mod	SVN122M
0	$1 \times$ blue	1 mod	SVN124M
	$1 \times$ clear	1 mod	SVN125M
1	$3 \times \mathrm{red}$	1 mod	SVN127M

SVN122M, SVN125M, SVN124M

SVN121M, SVN122M, SVN127M

DIN Socket Outlets

Description	Characteristics	Width	Cat ref.
DIN mounted, double pole, auto	10 A	2.5 mod	SNO10DA
switched complete with safety shutters and 'ON' indicator	15 A	2.5 mod	SNO15DA

SNO15DA

Description

Provides safety for extra low voltage $8,12,24 \mathrm{~V}$ ~.

Technical data

- Secondary voltage: 8V, 12V, 24V
- Bell transformers are short circuit protected
- Bells/buzzers: Maximum continuous duty $\leq 30 \mathrm{~min}$

Connection capacity

Cable clamp type

Output

- Bells: 85dBA

Buzzers: 78dBA
When a bell transformer is
installed in an enclosure with
mains voltage equipment, 230 V cable should be used on the secondary side of the transformer or extra low voltage cable should be sheathed within the enclosure.

Note

The transformers have a higher
no load voltage. The stated
voltages correspond to the
voltages at nominal load

Technical information: Page 136

ST312

Safety Transformers

Description	Characteristics	Width	Cat. ref.
Frequency: $50 / 60 \mathrm{~Hz}$	25 VA	4 mod	ST312
Primary voltage: 230 V			
Secondary voltage: $12 / 24 \mathrm{~V} \sim$		6 mod	ST315

Bell Transformers

Description	Characteristics	Width	Cat. ref.
	Frequency: $50 / 60 \mathrm{~Hz}$	2 mod	ST303
	Primary voltage 230V ~ 8VA		
	Secondary voltage: 8V 1 A		
	12V ~ 0.67A		
	Frequency: $50 / 60 \mathrm{~Hz}$	3 mod	ST305
	Primary voltage 230V~ 16VA		
	Secondary voltage: 8V 2		
	12V ~ 1.33A		

Bells

Description	Characteristics	Width	Cat. ref.
1	$8 / 12 \mathrm{~V} \sim$	1 mod	SU212
$4 \mathrm{VA}-0.35 \mathrm{~A}$			
$230 \mathrm{~V} \sim$			
	$6.5 \mathrm{VA}-0.03 \mathrm{~A}$		SU213

ST303

$$
12 \mathrm{~V} \sim 1.33 \mathrm{~A}
$$

SU212

SU214

Buzzers

Description	Characteristics	Width	Cat. ref.
	$8 / 12 \mathrm{~V} \sim$	1 mod	SU214
	$4 \mathrm{VA}-0.35 \mathrm{~A}$		
	$230 \mathrm{~V} \sim$	SU215	
$6.5 \mathrm{VA}-0.03 \mathrm{~A}$			

Description

Our Emergency Lighting Discharge Test Package has been developed to meet the needs of the electrical industry. In accordance with AS2293.1, 'Emergency Evacuation Lighting for Buildings', a discharge test circuit MUST be installed in both existing and new installations for the purpose of testing the charge. The test facility must also be able to be reset manually.

Application

The wired 'off-the-shelf' package may be mounted using the supplied enclosure where space in the switchboard is limited. It can also be installed in the Hager range of performa Panelboards by taking advantage of the DIN rail area at the top of the switchboard.

Use and implementation
Upon engaging the Green push button for 1 second, the timer starts it's operation and energises the contactor coil. The four normally closed contacts open, initiating operation of the emergency lights. The timer, to be set at $2 h r s$ (for initial commissioning, 90 mins thereafter), completes its operation, de-energising the contactor coil returning the contacts to the normally closed position. If the red push button is pressed the timer resets and is ready for the green push button to start the timing cycle again.

Emergency Lighting Discharge Test Packages - Wired

Description	Characteristics	Cat ref.	
Emergency test package 1 - Wired in enclosure - For use as standalone - 4 circuits	Includes: - 6 pole surface mount IP40 enclosure with a lockable door - 4 Pole 40A N/C Contactor - Push button 1N/O (green) + 1N/C (red) - Delay timer 0.1sec to 10 hrs	EMERG1W	EMERG2W and EMERG1W
Emergency test package 2 - Wired in enclosure - For use as standalone - 2 circuits	Includes: - 4 pole surface mount IP40 enclosure with a lockable door - 2 Pole 25A N/C Contactor - Push button 1N/O (green) + 1N/C (red) - Delay timer 0.1 sec to 10 hrs	EMERG2W	
Emergency test package 3 - Wired without enclosure - For use in panelboards and/or other enclosures - 4 circuits	Includes: - 4 Pole 40A N/C Contactor - Push button 1N/O (green) + 1N/C (red) - Delay timer 0.1 sec to 10 hrs	EMERG3W	
Emergency test package 4 - Wired without enclosure - For use in panelboards and/or other enclosures - 2 circuits	Includes: - 2 Pole 25A N/C Contactor - Push button 1N/O (green) + 1N/C (red) - Delay timer 0.1 sec to 10 hrs	EMERG4W	EMERG3W

Electrical characteristics

Family	SBRx40	SBRx64	SBRx80	SBRx90	SBR399	ESC080
Thermal current Ith $\left(40^{\circ} \mathrm{C}\right)$	40 A	63 A	80 A	100 A	125 A	-
Operational frequency	$50 / 60 \mathrm{~Hz}$	50 Hz				
Rated insulation voltage (Ui)	440 V	240 V				
Rated impulse withstand voltage (Uimp)	6 kV	4 kV				
Protection degree	3	3	3	3	3	2
Working temperature	-20 to $50^{\circ} \mathrm{C}$	-10 to $50^{\circ} \mathrm{C}$				
Storage temperature	-40 to $80^{\circ} \mathrm{C}$					

Operational currents le (AS/NZS IEC 60947-3)

Utilisation category	Rated voltage						
AC 21A/B	$230-400 \mathrm{~V} \mathrm{AC}$	40 A	63 A	80 A	100 A	125 A	-
AC 22A/B	$230-400 \mathrm{~V} \mathrm{AC}$	40 A	63 A	80 A	100 A	125 A	-
A category = Frequent operation	B category $=$ Infrequent operation						

Short circuit characteristics

Rated short time withstand current 1s (Icw) (rms)	IEC 60947-3	600A	945A	960A	1200A	1500A	-
Rated short circuit making capacity (Icm)	IEC 60669	6kA with 40A MCB C curve	-	-	-	-	-

Mechanical characteristics

Rigid cable section	$25 \mathrm{~mm}^{2}$	$50 \mathrm{~mm}^{2}$	$50 \mathrm{~mm}^{2}$	$50 \mathrm{~mm}^{2}$	$50 \mathrm{~mm}^{2}$	$10 \mathrm{~mm}^{2}$
Flexible cable section	$16 \mathrm{~mm}^{2}$	$35 \mathrm{~mm}^{2}$	$35 \mathrm{~mm}^{2}$	$35 \mathrm{~mm}^{2}$	$35 \mathrm{~mm}^{2}$	$6 \mathrm{~mm}^{2}$
Tightening torque	2.8 Nm	3.6 Nm				
IP protection degree	20	20	20	20	20	20
Mechanical endurance (number of cycles)	60,000	40,000	40,000	40,000	40,000	$1,000,000$
Electrical endurance @ AC22 (number of cycles)	5,000	2,500	2,500	2,500	2,500	60,000

Overall dimensions	No. of poles						
Width (mm)	1 P	17.5	17.5	17.5	17.5	17.5	1/2P 8.75
	2 P	36	36	36	36	36	-
	3 P	53	53	53	53	53	-
	4 P	72	72	72	72	72	-
Height (mm)		83	83	83	83	83	83
Depth (mm)		72	72	72	72	72	60

Electrical characteristics

Family	SF									
Reference	SFL125	SFM125	SFL225	SFT125	SFT140	SFT225	SFT240	SFT440	SF263	SF463
Type	I-II	\|-I		I-II	I-O-II					
Modular size	1 module	1 module	2 module	1 module	1 module	2 module	2 module	4 module	4 module	8 module
Number of Poles	1 P	1 P	2 P	1 P	1 P	2 P	2 P	4P	2P	4P
Thermal current lth ($40^{\circ} \mathrm{C}$)	25A	25A	25A	25A	40A	25A	40A	40A	63A	63A
Operational frequency	$50 / 60 \mathrm{~Hz}$	50/60Hz	50/60Hz	50/60Hz	$50 / 60 \mathrm{~Hz}$					
Rated operation voltage in AC	230 V	230V	230V	230V	230 V	230V	230 V	400 V	230 V	400 V
Rated insulation voltage (Ui)	440 V	440 V	440 V	440V	440V	440V	440 V	440 V	500 V	500 V
Rated impulse withstand voltage Uimp	4 kV									
Protection degree	2	2	2	2	2	2	2	2	2	2
Working temperature	-20 to $50^{\circ} \mathrm{C}-20$ to $50^{\circ} \mathrm{C}$									
Storage temperature	-40 to $80^{\circ} \mathrm{C}-40$ to $80^{\circ} \mathrm{C}$									

Operational currents le (IEC 60947-3)

Load duty category	Rated voltage										
AC 21A	$230-400 \mathrm{~V}$ AC	25A	25A	25A	25A	40A	25A	40A	40A	63A	63A
AC 22A	230-400V AC	25A	25A	25A	25A	40A	25A	40A	40A	40A	40A
AC 22B	230-400V AC	25A	25A	25A	25A	40A	25A	40A	40A	40A	40A

A category $=$ Frequent operation $\quad B$ category $=$ Infrequent operation

Short circuit characteristics

Rated short time withstand current 1s Icw (rms)	IEC 60947-3	375A	375A	375A	375A	600A	375A	600A	600A	N/A	N/A
Rate conditional short circuit current (rms)	IEC 60947-3	N/A	4.5kA with 63A MCB C curve	4.5kA with 63A MCB C curve							

Mechanical characteristics

Rigid cable section (max.)	$16 \mathrm{~mm}^{2}$	$16 \mathrm{~mm}{ }^{2}$	$16 \mathrm{~mm}^{2}$	$16 \mathrm{~mm}^{2}$	$25 \mathrm{~mm}^{2}$	$25 \mathrm{~mm}^{2}$				
Flexible cable section (max.)	$10 \mathrm{~mm}^{2}$	$16 \mathrm{~mm}^{2}$	$16 \mathrm{~mm}^{2}$							
Tightening torque	1.8 Nm	2.9 Nm	2.9 Nm							
IP protection degree	20	20	20	20	20	20	20	20	20	20
Mechanical endurance (number of cycles)	200,000	200,000	200,000	200,000	200,000	200,000	200,000	200,000	100,000	100,000
Electrical endurance @ AC22 (number of cycles)	25,000	25,000	25,000	25,000	25,000	25,000	25,000	25,000	5,000	5,000

Overall dimensions

Width (mm)	17.5	17.5	35	17.5	17.5	35	35	70	71.5	143
Height (mm)	83	83	83	83	83	83	83	83	90	90
Depth (mm)	68	68	68	68	68	70	70	70	72	72

Wiring Diagrams for the use of changeover switches (I-0-II) with stand-by generators

Stand-by generator or Alternative supply generator: typical location of manual changeover device with centre "off" position in the main switch board.

The incoming changeover must be protected with an appropriate MCB 63A - 6kA - C curve to protect against short circuit and disconnection.

NOTE 1: In Australia and NZ, the Main Supply Neutral upstream of the MEN connection is NOT allowed to be switched. (AS/NZS 3010: Electrical installations - Generating sets).

NOTE 2: Refer to AS/NZS 3000, 3010 and local Service and Installation Rules for specific requirements.

Single phase SFT2xx, SF263

MAIN SWITCH BOARD
Normal Supply

Three phase SFT4xx, SF463

Electrical Characteristic

Rated operating currents \& power ratings in AC

AC1/AC7a	Rated operating currents le		25A	25A	40A	63A	-
	Rated operating power	$\underline{230 V}$	4.6 kW	4.6 kW	7.3 kW	11.6 kW	-
		400 V	-	13.8 kW	22 kW	35 kW	-
AC3/AC7b	Rated operating currents le		8.5A	8.5A	25A	32A	-
	Rated operating power	$\underline{230 V}$	880W	880W	2.6 kW	3.3 kW	-
		400 V	-	2.6 kW	7.8kW	10 kW	-

Mechanical \& electrical endurances

Mechanical \& electrical endurances						
Mechanical endurance	no. of operations	$1,000,000$	$1,000,000$	$1,000,000$	$1,000,000$	$1,000,000$
Electrical endurance @ le AC7a (AC12 for aux)	no. of operations	60,000	60,000	60,000	60,000	60,000

MCB protected short-circuit withstand

Associated protection	$\begin{aligned} & \hline \text { MCB } \\ & 25 A-6 k A \end{aligned}$	$\begin{aligned} & \hline \text { MCB } \\ & 25 \mathrm{~A}-6 \mathrm{kA} \end{aligned}$	$\begin{aligned} & \hline \text { MCB } \\ & 40 \mathrm{~A}-10 \mathrm{kA} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { MCB } \\ & 63 \mathrm{~A}-10 \mathrm{kA} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MCB } \\ & 6 A-6 k A \end{aligned}$
Power dissipation					
Power dissipation per current path	1.5W	1.5W	3.2W	5W	0.4W
Magnetic system for standard contactor					
Pick-up	7.4VA	9.2VA	60VA	60VA	-
Coil consumption	1.8VA	1.85 VA	7VA	7VA	-
Closing delay	20 ms	20 ms	20 ms	20 ms	-
Opening delay	15 ms	15 ms	20 ms	20 ms	-
Magnetic system for Hum free contactor					
Pick-up	2.2W	2.8W	5W	5W	-
Coil consumption	2.2 W	2.8 W	5W	5W	-
Closing delay	25 ms	25 ms	25 ms	25ms	-
Opening delay	15 ms	15 ms	20 ms	20 ms	-

Magnetic system for Lighting contactors (control)

Std and eco	Pick-up	9.5 VA	16.3 VA	16.3 VA	16.3 VA	-
	Coil Consumption	2.5 VA	3.1 VA	3.1 VA	3.1 VA	-
Hum-free	Pick-up	2.5 VA	3.2 VA	3.2 VA	3.2 VA	-
	Coil Consumption	2.5 VA	3.2 VA	3.2 VA	3.2 VA	-

Connection

Main contact cable section	rigid	1 to $10 \mathrm{~mm}^{2}$	1 to $10 \mathrm{~mm}^{2}$	4 to $25 \mathrm{~mm}^{2}$	4 to $25 \mathrm{~mm}^{2}$	$10 \mathrm{~mm}^{2}$
	flexible	1 to $6 \mathrm{~mm}^{2}$	1 to $6 \mathrm{~mm}^{2}$	4 to $16 \mathrm{~mm}^{2}$	4 to $16 \mathrm{~mm}^{2}$	$6 \mathrm{~mm}^{2}$
Main contact connection screw	Type	M3.4	M3.4	M5	M5	M3.4
	Posidrive	PZ2	PZ2	PZ2	PZ2	PZ2
	Max. tight. torque	1.2 Nm	1.2 Nm	3.5 Nm	3.5 Nm	1.2 Nm
Coil connection cable section	rigid	1 to $10 \mathrm{~mm}^{2}$	$6 \mathrm{~mm}^{2}$			
	flexible	1 to $6 \mathrm{~mm}^{2}$	$6 \mathrm{~mm}^{2}$			
Coil connection screw	Type	M3.5	M3.5	M4	M4	-
	Posidrive	PZ2	PZ2	PZ2	PZ2	-
	Max. tight. torque	1.2 Nm	1.2 Nm	2.5 Nm	2.5 Nm	-
Working temperature		$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$				
Storage temperature		$-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$				

Choice of Contactors

Knowing the type of application will assist in the selection of suitable contactors. Typical aplication parameters include ambient operating temperature, the number of operations and the electrical load type (Heating / Motors / Lighting). Taking all into consideration will ensure continuous service and unnecessary call backs.

- Heating applications: Suitable for slightly inductive loads such as heating elements or convectors.
- Motor applications: Suitable for motor loads such as fans and pool pumps.
- Lighting loads: Incandescent, fluorescent and sicharge lamps are classified as 'high inrush' due to the higher current draw when first switched on compared to the operating / running current.

The contactors are AC7-a (resistive load) and AC7-b (inductive load) approved.

Adjacent fitting

LZ060 inserts are to be fitted between all contactors and adjacent devices to ensure optimum operation and heat dissipation

Heating applications

The choice of the contactor is based on the electrical heating load, and the targeted life time.

Single phase

Three phase supply

Rated ouput voltage	Rated output current	AC1/AC7A (maximum load in kilowatts)							
230V AC	25 A	1	1.35	3	4	4.6			
	40 A	1.6	2.2	4.7	6.3	7.3			
	63 A	2.5	3.5	7.5	10	11.6			
400V AC	25 A	3	4.3	8.6	12	13.8			
	5	6.3	14.385	18500	22				

Operating temps	
Up to $40^{\circ} \mathrm{C}$ 1 $\mathbf{4 0 o}-50^{\circ} \mathrm{C}$ 0.9	

\#NOTE: 1 opening +1 closing contact $=2$ operations. *On three phase configuration the maximum load per phase corresponds to the values stated divided by 3.

Example application:

4kW (230V AC) heating element ie. AC1/AC7a load
Determine suitability of ESC225 (2 pole, 25A) using load calculation with
temperature derating. According to data sheet for AC1/AC7a load on ESC225 - (1 module 25A) the rated operational current
$(\mathrm{le})=25 \mathrm{~A}$, maximum load $=4.6 \mathrm{~kW}(230 \mathrm{VAC})$
Assume operating temperature $=48^{\circ} \mathrm{C}$
The maximum load switching capacity at $48^{\circ} \mathrm{C}$ is calculated as follows: Maximum Load \times Derating factor $=4.6 \mathrm{~kW} \times 0.9=4.14 \mathrm{~kW}$

Thus, ESC225 is suitable for a 4 kW heating element operating at $48^{\circ} \mathrm{C}$ maximum.

Duty cycle or durability

The number of reliable operations of ESC225 (2 pole, 25A) contactor depends on the connected load.

Connected to $1 \mathrm{~kW}(230 \mathrm{~V}$ AC) load $=6 \underline{600,000}$ operations
Connected to 3 kW (230V AC) load $=150,000$ operations
Connected to $4 \mathrm{~kW}(230 \mathrm{~V} \mathrm{AC})$ load $=100,000$ operations
How long will ESC225 (25A) connected to 4kW load last?
At 100 operations per day it will last a minimum of 1000 days
(ie $100,000 \div 100=1000$ days).
At 500 operations per day it will last a minimum of 200 days
(ie 100,000 $\div 500=200$ days).
If higher durability is required, the contactor can be up-sized to a higher current rating.

Motor applications (AC7-b equivalent to AC3)
Single phase 230V

	Contactor rating	Control diagram	
		2P 230V single phase	3P 400V three phase
Maximum power for the motor	16A	0.57 kW	1.7 kW
	25A	0.88 kW	2.65 kW
	40A	2.6 kW	7.8 kW
	63A	3.3 kW	10 kW

Modern lighting systems generate high inrush currents．Therefore we recommend to use the table below to calculate the maximum number of lamps（or dual fittings） which can be connected to each pole of a Hager contactor on 230 V 50 Hz circuits．

From June 2014，Hager has improved the performance of 1 and 2 module contactors．The products identified on the front face with the pictogram $⿴ 囗 十$ can accept a higher number of lamps．

Compact Fluorescent Lamps（CFL＇s）		Lamp wattage（W）	Rated output（per pole）			
		25A＇＋＇	40A	63A		
	CFL with external electronic ballast		5－7	27	49	76
		9－11	26	40	63	
		15－26	22	36	57	
WHO	CFL with integrated electronic ballast	5－15	54	86	135	
		18－26	40	63	100	

Incandescent lamps

Tungsten Halogen Lamps 230V

Halogen ELV（12 or 24V） with electronic transformer

| | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The information given below should be considered as indicative and is provided on an "as is" basis. Considerable variations may occur depending on the electrical installation and equipment used. Only experienced professionals with the expertise to determine the characteristics of the electrical installation (value and duration of inrush currents, general characterics of the installation, types of loads, etc.) may approve and implement a configuration, in accordance with the currently applicable installation standards. Hager accepts no liability for the use made of this information.

Discharge lamps		Lamp wattage (W)	Rated output (per pole)		
			25A '+'	40A	63A
	High pressure mercury vapour lamps (Low power factor <0.9)	50	28	32	50
		80	18	24	37
		125	10	18	28
		250	6	10	15
		400	2	6	9
		700	0	4	5
	High pressure mercury vapour lamps (High power factor >0.9)	50	22	26	40
		80	16	22	34
		125	10	15	23
		250	6	9	14
		400	2	5	8
		700	0	3	5
		1000	0	2	3
	Low pressure sodium vapour lamps (Low power factor <0.9)	18	20	18	21
		35-55	9	14	20
		90	6	9	14
		135-180	4	6	8
	Low pressure sodium vapour lamps (High power factor >0.9)	18	8	12	24
		35	7	10	23
		55	5	10	19
		90	4	8	16
		135	2	5	7
		180	2	5	6
	High Pressure sodium lamps (Low power factor <0.9)	35	24	30	50
		50	15	22	34
		70	12	18	28
		110	10	14	22
		150	8	10	16
		250	5	6	10
		400	2	4	6
		1000	1	2	3
	High Pressure sodium lamps (High power factor >0.9)	35	18	31	50
		50	18	22	35
		70	12	16	25
		110	8	13	21
		150	6	8	13
		250	4	7	11
		400	2	5	8
		1000	1	2	3
	Metal - Halide Lamp (Low power factor <0.9)	35	30	42	55
		70	17	26	36
		150	12	14	20
		250	8	9	14
		400	4	6	9
		1000	0	3	5
	Metal - Halide Lamp (High power factor >0.9)	35	18	22	39
		70	13	22	39
		150	8	12	22
		250	7	9	16
		400	2	5	7
		1000	1	2	3
LED's					
LED 230V integrated Driver, Non dimmable, E27 / GU10		4-12	54	86	135
		17-22	40	63	101
		30-40	28	44	70
		50	22	35	55
	LED 230V integrated driver Dimmable, GU10	4-12	120	159	250
\bigcirc		17-22	88	118	185
		30-40	62	82	130
(8)		50	48	65	102
		100	5	6	9
	LED high bay lighting 230 V integrated driver	150	3	4	6
\square		200	2	4	6
(8)	LED 12V external driver Dimmable	1-5	120	180	220
		7-10	120	160	200
		15	88	160	200

Family	EPE			
Reference	EPE510	EPE515	EPE520	EPE524
Modular size	1 module	1 module	1 module	1 module
Number of contacts	1	2	2	2
Type of contacts	1NO	$1 \mathrm{NC}+1 \mathrm{NO}$	2NO	2NO
Contact rating AC1	16A	16A	16A	16A
Rated operation voltage in AC	230 V	230 V	230 V	24 V
Rated operation voltage in DC	110 V	110 V	110 V	12 V
Operational frequency	50/60Hz	50/60Hz	50/60Hz	$50 / 60 \mathrm{~Hz}$
Rated insulation voltage (Ui)	250 V	250 V	250 V	250 V
Power consumption	25 VA	25 VA	25 VA	25 VA
Power dissipation per contact	1.2 W	1.2 W	1.2 W	1.2 W
Min duration of command impulse	50 ms	50 ms	50 ms	50 ms
Max duration of command impulse	60s	60s	60s	60s
Current at rest	6 mA	6 mA	6 mA	6 mA
Working temperature	$-5^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$			
Storage temperature	$-40^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$			
Mechanical characteristics				
Rigid cable section	1.5 to $10 \mathrm{~mm}^{2}$			
Flexible cable section	1 to $6 \mathrm{~mm}^{2}$			
Tightening torque	1.6 Nm	1.6 Nm	1.6 Nm	1.6 Nm
IP protection degree	20	20	20	20
Mechanical endurance (number of cycles)	500,000	500,000	500,000	500,000
Electrical endurance @ AC22 (number of cycles)	150,000	150,000	150,000	150,000
Overall dimensions				
Width (mm)	17.5	17.5	17.5	17.5
Height (mm)	83	83	83	83
Depth (mm)	63	63	63	63

Utilisation Advice
The following tableshows the number of lamps that can be connected per phase at 230 V 50 Hz
Incandescent lamps

Tungsten filament and 230V halogen	Power	40W	60W	75W	100W	150W	200W	300W	500W	1000W
	Max. No.	45	30	24	18	12	9	5	3	2
ELV halogen (12 or $\mathbf{2 4 V}$) with electronic transformer	Power	20W	50W	75W	100W	150W	300W			
	Max. No.	70	28	19	14	9	3			
Fluorescent tubes										
Non compensated - single (no capacitor)	Power	15W	18W	30W	36W	58W				
	Max. No.	29	25	25	24	14				
Parallel compensated - single (capacitor added)	Power	15W	18W	30W	36W	58W				
	Max. No.	27	27	25	25	16				
	C total max ${ }^{\text {a }}$		$121 \mu \mathrm{~F}$	112 $\mu \mathrm{F}$	112 2 F	72 $\mu \mathrm{F}$				
Series compensated - double (capacitor added)	Power	2x18W	2x20W	2x36W	2x40W	$2 \times 58 \mathrm{~W}$	2x65W			
	Max. No.	40	40	22	22	12	12			
	C total max ${ }^{(a)}$	2.7MF	$2.7 \mu \mathrm{~F}$	$3.4 \mu \mathrm{~F}$	$3.4 \mu \mathrm{~F}$	5.3 F	5.3 $\mu \mathrm{F}$			
Electronic ballast - single	Power	18W	36W	58W						
	Max. No.	30	26	15						
Electronic ballast - double	Power	2x18W	2x36W	$2 \times 58 \mathrm{~W}$						
	Max. No.	15	13	8						
Compact fluorescent w/ electromagnetic ballast no compensation	Power	7W	10W	18W	26W					
	Max. No.	50	45	40	25					
Compact fluorescent w/ electromagnetic ballast	Power	11W	15W	20W	23W					
	Max. No.	80	60	50	40					
Discharge lamps										
High pressure mercury - no compensation	Power	50W	80W	125W	250W	400W				
	Max. No.	11	9	7	3	2				
High pressure mercury - parallel compensation	Power	50W	80W	125W	250W	400W				
	Max. No.	9	8	6	3	2				
	C total max ${ }^{(a)}$	63 F	56 $\mu \mathrm{F}$	60HF	54 $\mu \mathrm{F}$	50رF				
High pressure sodium - no compensation	Power	70W	150W	250W	400W					
	Max. No.	9	5	3	2					
High pressure sodium - compensated	Power	70W	150W	250W	400W					
	Max. No.	5	3	2	1					
	C total max ${ }^{(a)}$	60بF	$54 \mu \mathrm{~F}$	$64 \mu \mathrm{~F}$	50hF					

[^0]Safety transformers
These transformers are designed to ensure personal safety, their primary winding are electrically separated from their secondary windings and they are intended to feed safety extra low voltage (SELV) circuits $\leq 50 \mathrm{~V}$. A thermal overload, in the primary windings, ensures that if a short circuit or an overload occurs in the output it will not damage the device.

Bell transformers

Bell transformers are similar to safety transformers but the secondary voltages do not exceed 24 volts, they are also similarly protected against short circuits and overloads, by thermal protection in the primary winding.

Compliance with the standards

The bell and safety transformers conform with EN 61558 (BS
3535). Where transformers are to be used in a common enclosure
with other devices, heat dissipation inserts should be used.

Recommendation of Use

- To link only a secondary (never link both simultaneously)
- Do not connect (in series or in parallel) secondaries of different transformers.

Technical specification

Reference		ST303	ST305	ST312	ST315
Nominal power		8VA	16VA	25VA	63VA
Designation		Bell	Bell	Safety	Safety
Primary voltage	U_{1}	230 volts	230 volts	230 volts	230 volts
Secondary voltage	U_{2}	8 volts	8 volts	12 volts	12 volts
		$\mathrm{ln}=1 \mathrm{~A}$	$1 \mathrm{n}=2 \mathrm{~A}$	$\mathrm{ln}=2.08 \mathrm{~A}$	$\mathrm{ln}=5.25 \mathrm{~A}$
	\cup_{3}	12 volts	12 volts	24 volts	24 volts
		$\mathrm{ln}=0.67 \mathrm{~A}$	$\mathrm{ln}=1.33 \mathrm{~A}$	$\mathrm{ln}=1.04 \mathrm{~A}$	$1 \mathrm{n}=2.63 \mathrm{~A}$
No load secondary	U_{2}	15 volts	12 volts	14 volts	14 volts
Voltage	U_{3}	22 volts	13 volts	29 volts	27 volts
Galvanic insulation		4 kV	4 kV	4 kV	4 kV
Max functional temperature		$35^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$
Insulation class		H	B	B	H
Overload and S/C protection		Thermal cut out in the primary winding			

Emergency lighting discharge test packages

Changeover

 switches
 Our modular manual changeover switches are a unique solution which have a three stable position switch (I-O-II) to allow you to control two power supply sources. They are available in both 2 and 4 pole versions, for single (25A, 40A or 63A) and three phase (40A or 63A) applications including the switching of generators, luminaires, machines etc.

[^0]: (a): Maximum capacity

